

Progetto 1.9 "Solare termodinamico" – PTR 2022-2024 – LA1.19

Simulazione e ottimizzazione di impianti ibridi CSP/PV/Eolici di scala medio-piccola operanti sui mercati MGP e MSD

M.Binotti, E.Martelli, L.Pilotti, G.Manzolini Politecnico di Milano, Dipartimento di Energia, GECoS Group

Centro Congressi "Roma Eventi – Fontana di Trevi" - Roma, 29 gennaio 2024

- ❖ Descrizione Attività
- Impianti ibridi CSP/PV/Wind
- Metodologia
- Modellazione dei componenti
- Caso studio
- Risultati Preliminari

Descrizione Attività

Dal precedente PTR:

- Sviluppata metodologia per ottimizzare impianti ibridi CSP/PV considerando vincoli operativi e due scenari di domanda elettrica (costante, carico nazionale scalato)
- La metodologia ha determinato la taglia ottimale dei sottosistemi e dimostrato che gli impianti ibridi CSP/PV abbassano i costi dell'energia prodotta ed aumentano la dispacciabilità

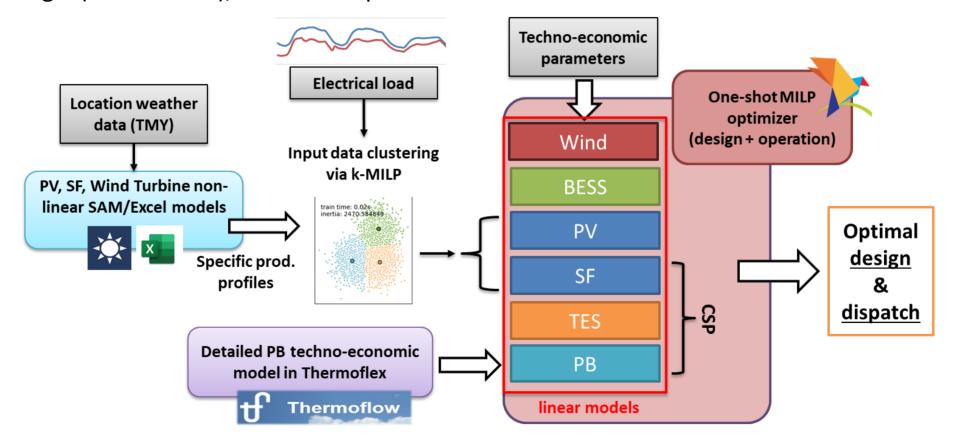
Attività LA1.19:

- 1. Sviluppo di modelli per campi eolici e perfezionamento modelli esistenti per ottimizzazione impianti ibridi CSP/PV/Eolici.
- **2. Simulazione** ed **ottimizzazione** preliminare del design e dell'operation di **impianti ibridi CSP/PV/Eolici** di scala mediopiccola.
- 3. Massimizzazione NPV considerando ricavi e costi di investimento ed operativi partecipando al MGP e MSD
- 4. Individuazione: i) configurazioni ibride più promettenti; ii) individuazione taglie ottimali power block
- 5. Definizione e valutazione prestazioni economiche di impianto ibrido per partecipare a progetto pilota UVAM
- **6. Modellazione** configurazioni di **power block ottimali** per taglia ottima precedentemente individuata (ORC, steam)
- 7. Implementazione modelli Power Block e affinamento ottimizzazione impianti ibridi
- 8. Benchmark con impianti non ibridi

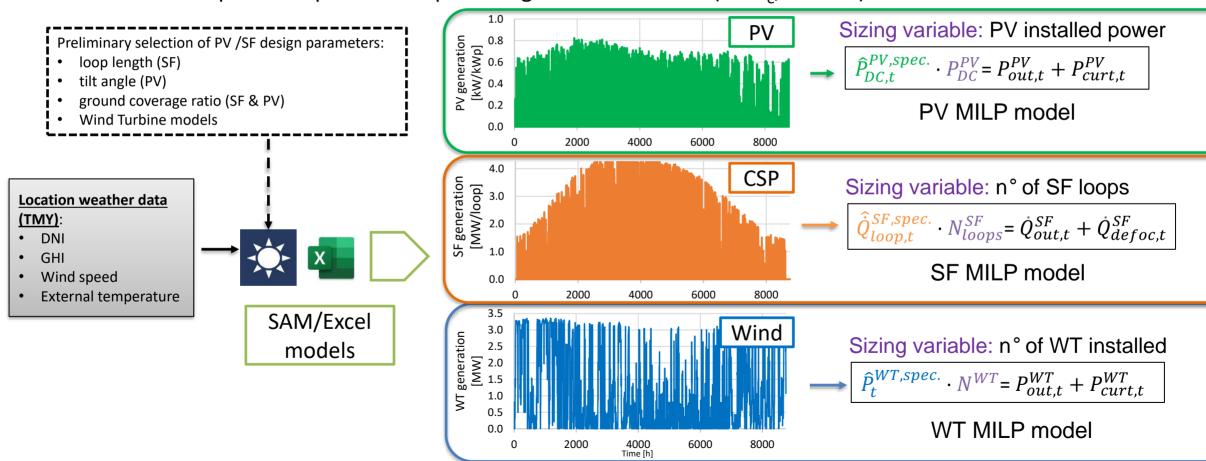
Impianto Ibrido - Motivazioni

- Impianti Fotovoltaici ed Eolici sono forniscono elettricità rinnovabile non programmabile a basso costo
- Impianti Solari Termodinamici forniscono elettricità rinnovabile programmabile grazie all'utilizzo di sistemi di accumulo a basso costo, ma sono caratterizzati da elevati costi dell'elettricità prodotta

IBRIDIZZAZIONE

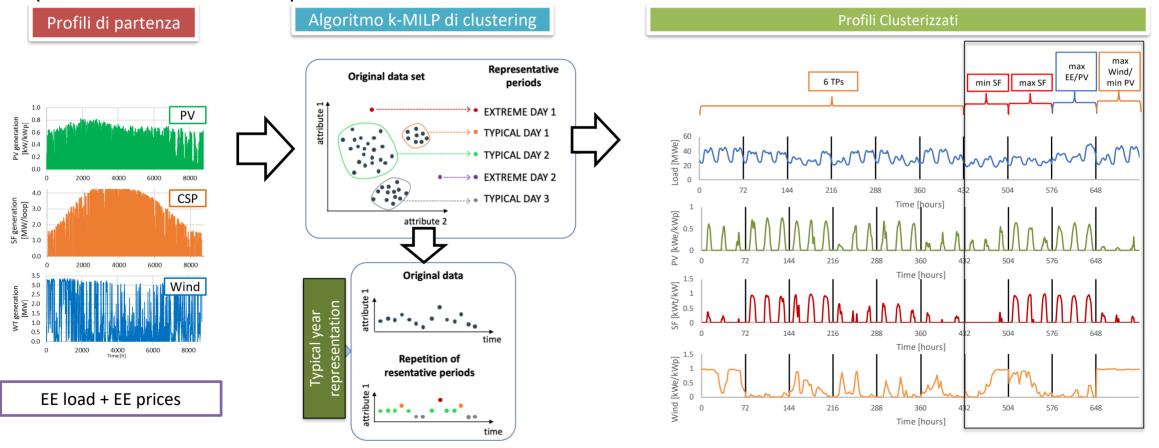

- Riduzione dei costi dell'elettricità
- Aumento del livello di "dispacciabiltà"

- Approccio di ottimizzazione di tipo Mixed-Integer Linear Programming (MILP)
- Ottimizzazione simultanea del **design** e dell'**operation** degli impianti ibridi
- Input dell'algoritmo: profili specifici di produzione dei diversi impianti (CSP, PV, WT), dati di carico, prezzi energia (MSD e MGP), modelli del power block



Metodologia

- Selezione delle tecnologie Fotovoltaiche (PV), solari a concentrazione (CSP) ed Eoliche (WT)
- Il campo specchi (SF), il campo PV e la turbina eolica vengono modellati in SAM/Excel
- Viene ottenuto un profilo specifico di produzione del campo PV (kWh_e/kW_{inst}) e del campo specchi (kWh_{th}/loop)
- Viene ottenuto un profilo di produzione per 1 singola turbina eolica (kWh_e/turbina)


Metodologia: Clustering

• Le serie di dati orari (produzioni specifiche PV, SF, Wind, carico, prezzi) sono raggruppate in un set di periodi tipici ed estremi di 3 giorni tramite un algoritmo di clustering

• L'anno viene rappresentato come una ripetizione di periodi tipo -> riduzione della complessità del problema (72x10 = 720h vs 8760h)

Metodologia: problema di ottimizzazione

Given:

- PV area-specific EE production
- SF area-specific heat production
- Wind turbine production (1 turbine)
- Electricity load to cover or power market prices/incentive scheme

Determine:

- Amount of land used
- Sizes of the different subsystems
- Plant scheduling in terms of electricity and heat produced, exchanged between components, storages level behavior, commitment (on/off) decisions, etc.

Subject to constraints:

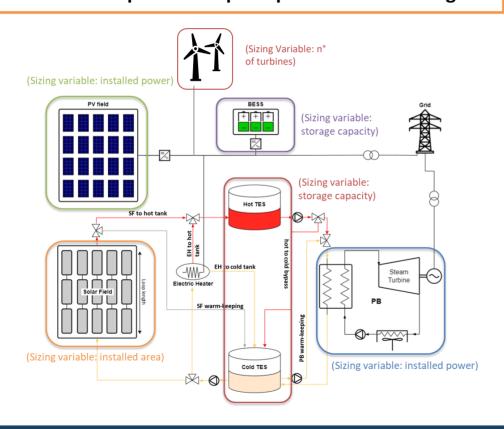
- Land area availability
- Min/max sizes of units
- Min/max storages levels
- Min/max HTF temperatures
- Min/max BESS power rates
- PB part load efficiency
- PB start-up trajectory and ramping patterns
- Energy and mass balances
- Required levels of dispatch (i.e. load following)

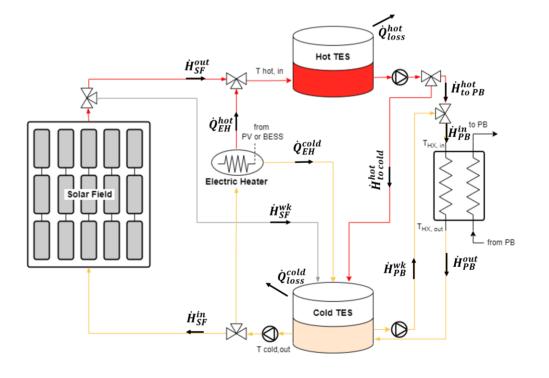
OBJECTIVE: minimising Total Annual Cost (TAC) or maximizing Total Annual Profit (TAP)

$$TAC = C_{inv} \cdot CRF + C_{op}$$

$$TAP = -C_{inv} \cdot CRF - C_{op} + R_{sales}$$

Metodologia: Ottimizzazione design & operation

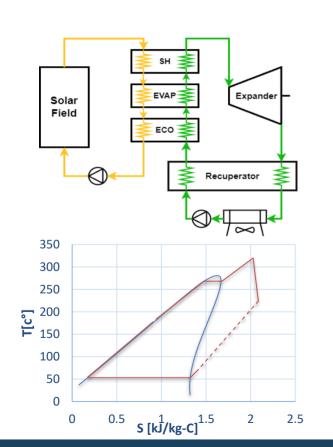


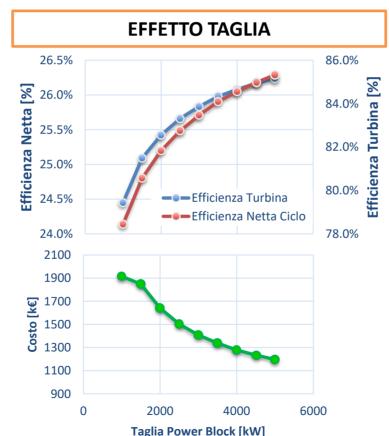


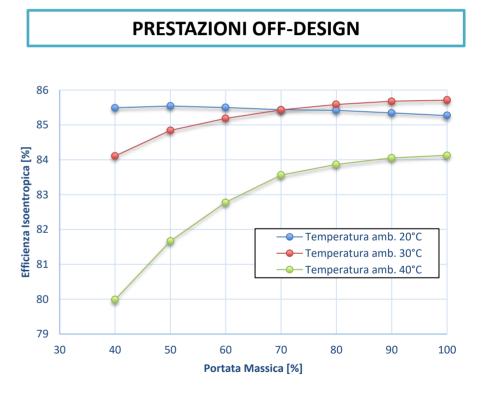
- Per ogni componente del sistema vengono sviluppati **modelli** separati e implementati nell'ottimizzatore come modelli «black-box», caratterizzati dai propri **parametri, variabili e vincoli**
- Le variabili operative consentono di descrivere il funzionamento del sistema durante l'anno su base oraria

Schema di impianto con principali variabili di design

Principali variabili operative del campo specchi

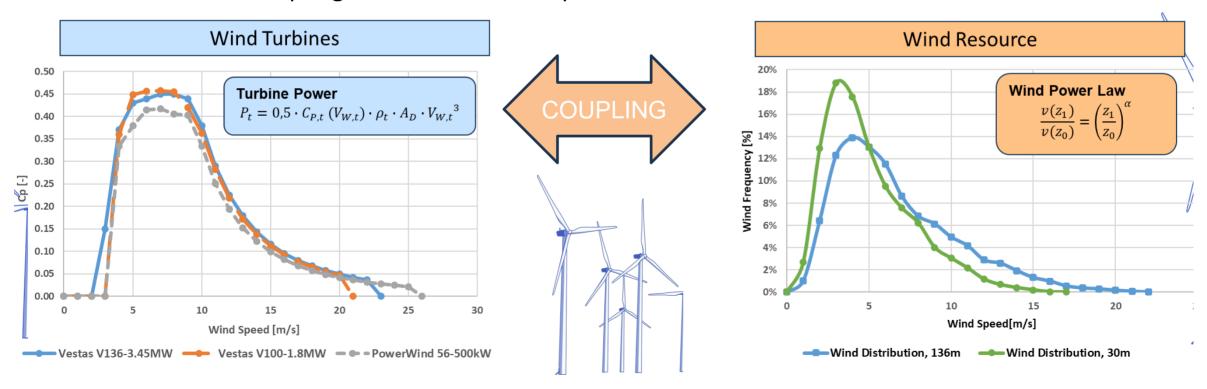



Modellazione dei componenti: ciclo ORC



- Sviluppo modelli tecno-economici cicli Rankine (ORC) per piccola taglia (1-5MW) con Thermoflex
- Analisi di diversi fluidi organici (cicloesano, toluene, pentano, etc.) e diverse configurazioni di ciclo
- Studio effetto taglia su performance e costi
- Studio delle **performance** in funzione del carico/condizioni ambiente
- Confronto con partner industriale (**Turboden**) per feedback su prestazioni e costi

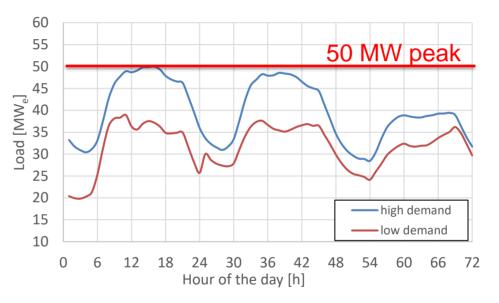
Modellazione dei componenti: Turbine Eoliche



Modello semplificato di turbine Vestas V136-3.45MW, Vestas V100-1.8MW, Power Wind 56-500kW

Turbine Model Used	Vestas V136-3.45MW	Vestas V100-1.8	Power Wind 56 500
Turbine Hub Height	136 m	90 m	56 m
Turbine Blade Radius	68 m	50 m	28 m
Rated Power	3.45 MW	1.8 MW	0.5 MW

- Analisi della risorsa ventosa per alcune località siciliane (Priolo Gargallo, Partanna)
- Utilizzo dati meteo per generazione curva di produzione oraria della turbina


Caso studio: impianto ibrido a Priolo Gargallo

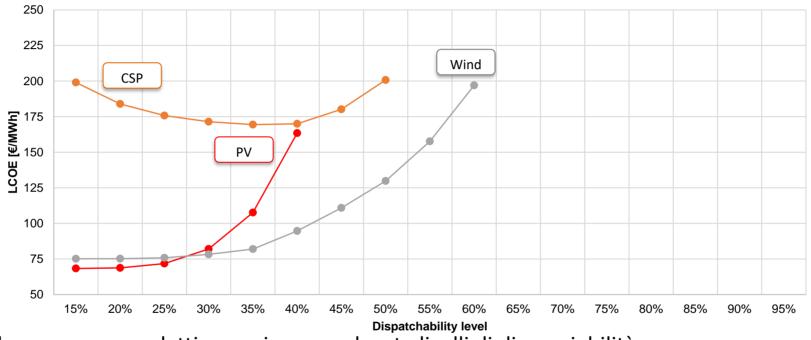
- Località selezionata: *Priolo Gargallo (Sicilia)* DNI = 1730 kWh/m²/anno; GHI = 1847 kWh/m²/anno
- Domanda elettrica: variabile con forma della domanda elettrica nazionale 2019 risacalta su un picco di 50 MW
- Tecnologie selezionate: CSP -> collettori Fresnel a Sali Fusi; PV > Silicio MultiCristallino; WT -> V136-3,45 MW;
 Blocco di potenze -> Rankine a vapore

	Value	Units
Location: Priolo Gargallo	37.13°N,	
(Sicilia)	15.21°E	_
Average Ambient Temperature	17.6	°C
Annual DNI	1730	kWh/m²-y
Annual GHI	1847	kWh/m²-y
Average Wind Speed @ 30 m	4.5	m/s

• Ottimizzazione vincolata di Design e operation. Vincolo: livello di Dispacciabilità (DL):

$$DL = rac{\sum_{h=1}^{8760} P_{injected,t}^{grid}}{\sum_{h=1}^{8760} \widehat{P}_{load,t}^{grid}}$$

Risultati – Design ottimale e LCOE


• Il design ottimale è funzione del livello di dispacciabilità imposto: sopra il 60% il CSP è necessario per accumulare energia durante il giorno e produrre la notte o per compensare le fluttuazioni della domanda

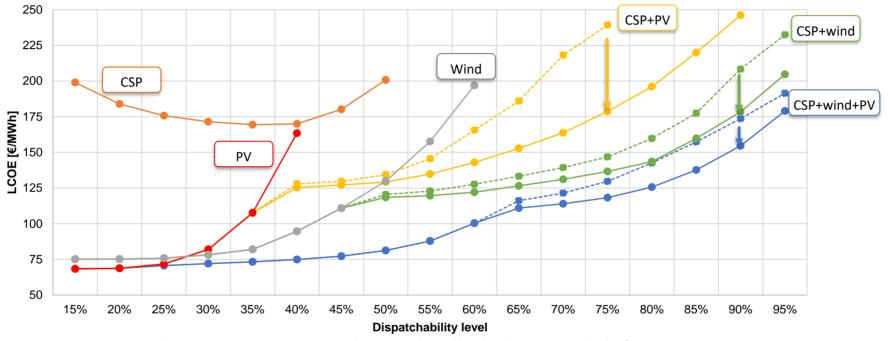
Risultati – LCOE vs dispatchability level

• Confronto tra le performance di impianti ibridi (CSP+PV+Wind, CSP+PV, CSP+Wind) ed impianti stand-alone (PV, Wind, CSP)


Gli impianti stand-alone non sono adatti a raggiungere elevate livelli di dispacciabilità

Risultati – LCOE vs dispatchability level

 Confronto tra le performance di impianti ibridi (CSP+PV+Wind, CSP+PV, CSP+Wind) ed impianti stand-alone (PV, Wind, CSP)


- Gli impianti stand-alone non sono adatti a raggiungere elevate livelli di dispacciabilità
- Le soluzioni ibride diventano interessanti per DL medio-alti (> 50%)
- La configurazione CSP+Wind surclassa la configurazione CSP+PV grazie ai profili di generazione meno sovrapposti
- Le soluzioni CSP+PV+Wind e CSP+Wind sono le sole solzioni in grado di raggiungere DL elevate (e.g. 95%) con LCOE moderati

Risultati – LCOE vs dispatchability level

 Confronto tra le performance di impianti ibridi (CSP+PV+Wind, CSP+PV, CSP+Wind) ed impianti stand-alone (PV, Wind, CSP)

- Gli impianti stand-alone non sono adatti a raggiungere elevate livelli di dispacciabilità
- Le soluzioni ibride diventano interessanti per DL medio-alti (> 50%)
- La configurazione CSP+Wind surclassa la configurazione CSP+PV grazie ai profili di generazione meno sovrapposti
- Le soluzioni CSP+PV+Wind e CSP+Wind sono le sole solzioni in grado di raggiungere DL elevate (e.g. 95%) con LCOE moderati
- L'integrazione del riscaldatore elettrico (EH) permette un'ulteriore riduzione dell'LCOE, soprattutto per DL elevati

Conclusioni e next steps

- Sviluppati nuovi modelli per componenti di impianti ibridi CSP/PV/Wind (WT, ORC)
- Sviluppato un efficiente approccio di ottimizzazione per impianti ibridi CSP/PV/Wind
- Caso studio in Sicilia a diverso DL e a domanda imposta:
 - ✓ Il CSP può trarre significativi vantaggi dall'integrazione dell'energia eolica: generazione solare ed eolica sono complementari
 - ✓ Con l'ibridazione è possibile ottenere DL elevati (> 80%) con un LCOE relativamente basso (< 125 €/MWh)
 - ✓ Impianti ibridi più competitivi di soluzioni stand-alone per DL medio-alti
 - √ L'integrazione EH è molto efficace per ridurre il curtailment di PV e wind e il LCOE
- Caso studio in Sicilia a diverso DL e con prezzo dell'elettricità imposto da MGP (non presentato)

PROSSIMI PASSI

- Definizione e valutazione prestazioni economiche impianto ibridi per progetto pilota UVAM
- Massimizzazione NPV considerando ricavi e costi di investimento/operativi partecipando al MGP e MSD

www.gecos.polimi.it

Prof. Marco Binotti: marco.binotti@polimi.it

Prof. Emanuele Martelli: <u>emanuele.martelli@polimi.it</u>