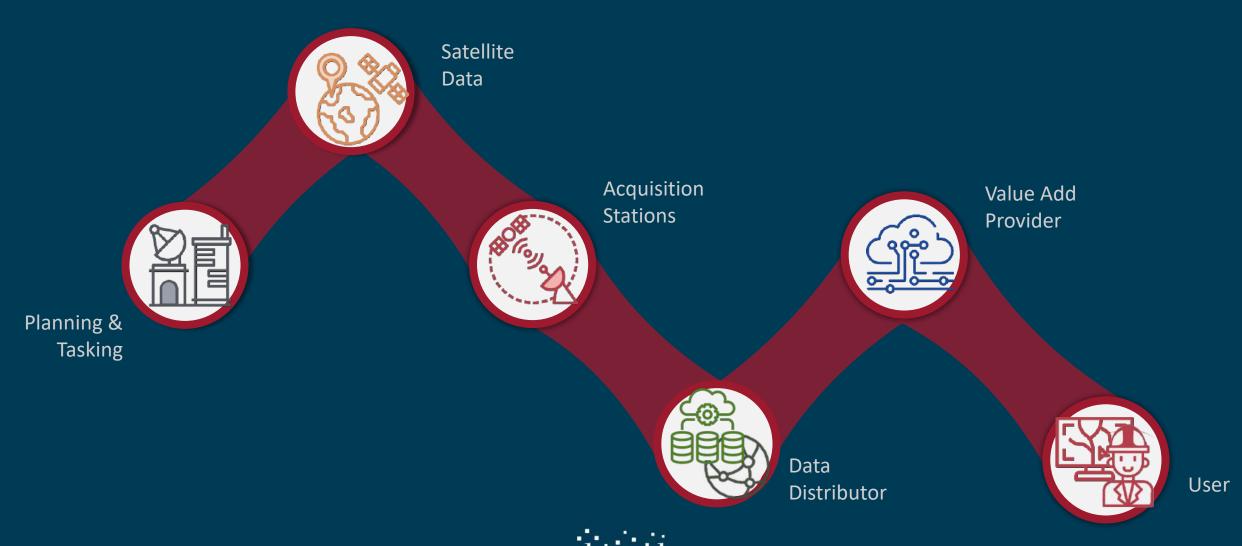
New Satellite as a Service paradigm for Multi-node operations in Space

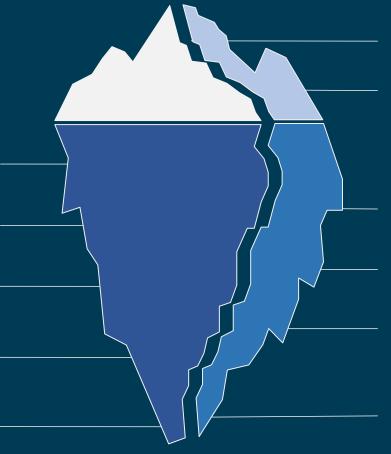


13° workshop Tematico AIT-ENEA Bologna, September 22, 2022

Massimo Zotti Head of Government & Security SBU

Earth Observation Value Chain

Reshaping the EO Value Chain


Limited Flexibility

Information Latency

Flat data downlink

Space assets as sylos

Increasing the Ground Stations is not sustainable

Space Access

Stream of Data

Limited Autonomy

Missed Observation

Poor quality or irrelevant downlinked data

Time to Launch

Processing data at the edge

- From data to actionable information
 - Optimization of the downlink channel usage
 - Wide area monitoring services
 - Low latency alerting
 - Information-driven autonomous workflows: NRT reaction to events or anomalies
 - sensors to sensor tasking
 - multi satellite coordinated acquisitions

2: 5m GSD Optical Multi-Spectral sensor

1: Low-res (120-250m) TIR Multi-Band sensor

Application examples

Alerting Latency is the driver

Continuous monitoring is the driver

Market segments	Applications		
Agriculture	Yield Mapping	Nutrient Management	Irrigation Management
Forestry	Forest Health Management	Forest Fire Monitoring	Forest Land Mapping
Urban Monitoring	Cadastre & Land Mapping	Monitoring Urban heat	Critical Infrastructure Monitoring
Natural Disasters	Risk Forecasts for Hazards	Support early Warning and Response	Support to Insurance
Security/Defence	Border Surveillance Migrants-Refugees	Non-Collaborative Vessel Detection	Accidents Search & Rescue
Defence	Theatre Real Time Threats Detection	SIGINT/IMINT Situation Awareness	Anomaly Detection
Maritime & Coastal	Fishing Zone Surveillance	Oil Spill	Marine Litter
Oil&Gas	Onshore & Offshore Oil Field Monitoring	Pipeline Monitoring	Gas Station Positioning

AIX FUTURE EO

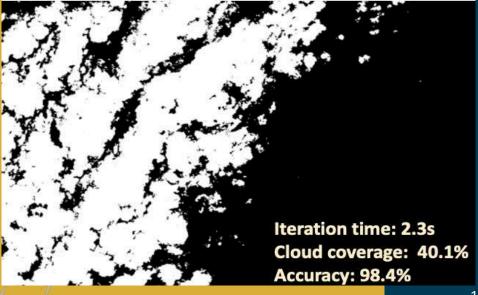
A strategic & tactical asset

- Integrate Al^X on your satellite to become part of the ecosystem and of the federated constellation
- Embed your space technologies, sensors, memories, radios, on our Al^X
 Carrier(s), to be used by all the Al^X customers
- Exploit AI^X as a tactical asset to improve your workflows
 - Exploit capabilities and ready-made applications on-demand
 - Write a custom application for a specific Use Case (and your Payload onboard)
 - Use processed data and information from one of the flight-proven applications

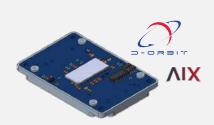
Al^x on-board component loads the APP on the satellite(s) and manages all the Uberised HW resources

Al^x ground component defines a Space App-Store

AI^X App: MiRAGE-Clarity


Clarity is a deep learning-based application that enables advanced EO payload data processing.

It has been designed to be compatible with the majority of on-board computing systems for Earth Observation missions, and is one of the Al^X applications' building blocks.


Application Use Case: ship detection

Ship detection from space has already been identified as a potentially interesting use case by several players in the European and US ecosystem and is envisaegd as one of AIX applications.

An open ecosystem

0.2-10 W

Embedded performance Low electrical power

23W

10+ x performance

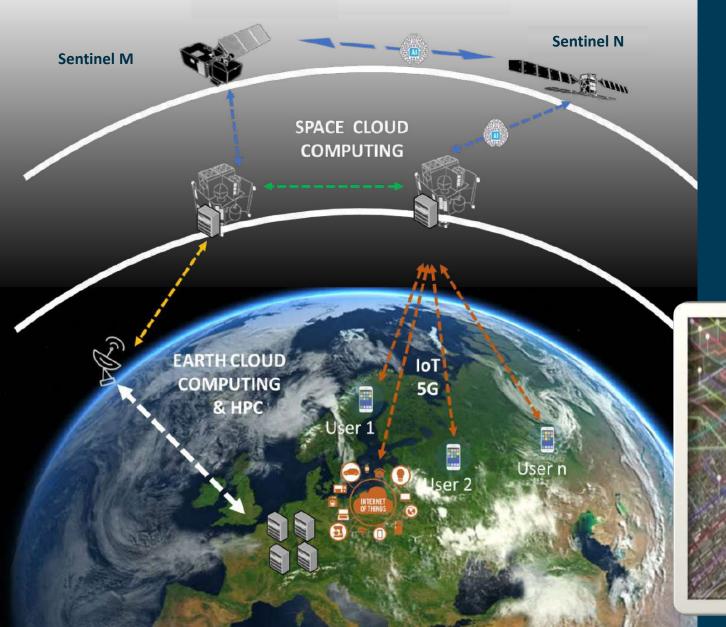
Unibap iX10

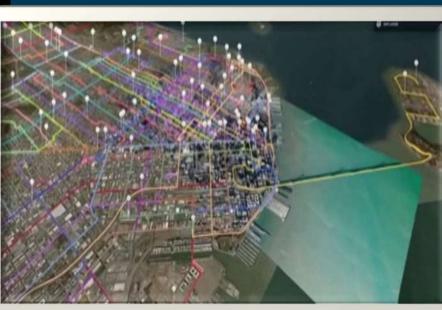
33W

50-100 x Performance of iX5 64x data centre - dedicated computing satellite

Customer / 3rd Party IOD

IoT (Greengrass)
DevOps (Kubernetes)
AI/ML (Sagemaker)





Al^X spacedge Cognitive Computing

Entering Flight preparation phase

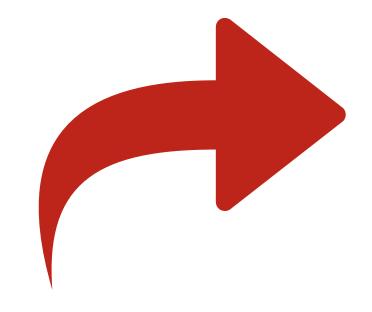
First launch
First half of 2023

How can we collaborate?

<u>Opt#1</u>. Set and share your needs (contributing to Al^X system consolidation) for:

- Discussing how to make feasible Space
 Services not sustainable today
- (EO) P/L selection & AppX
- Technologies & Protocols
- Implementation Priority

Opt#2. Let's run your own technology in space and demonstrate your business case


- Bring your P/L, your HPC computer, or in general your Space Component and let's use it in a AIX workflow
- Let's demonstrate your AI based algorithm in Space

Let's keep in touch

www.planetek.it

blog.planetek.it

/planetekitalia

@planetek

/planetek

linkedin.com/company/planetek-italia

